Please contact me for PDF copies if required.
Published and Accepted Papers
Edwards, T. L., S. Nowicki, B. Marzeion, R. Hock, H. Goelzer, H. Seroussi, N. C. Jourdain, et al. (2021). Projected Land Ice Contributions to Twenty-First-Century Sea Level Rise. Nature 593(7857), 74–82.
Lipscomb, W. H., G. R. Leguy, N. C. Jourdain, X. Asay-Davis, H. Seroussi, and S. Nowicki (2021). ISMIP6-Based Projections of Ocean-Forced Antarctic Ice Sheet Evolution Using the Community Ice Sheet Model. The Cryosphere 15(2), 633-61.
Cornford, S.L., H Seroussi, X. S. Asay-Davis, G. H. Gudmundsson, R. Arthern, C. Borstad, J. Christmann, et al. (2020). Results of the Third Marine Ice Sheet Model Intercomparison Project (MISMIP+). The Cryosphere 14, 2283-2301.
Gwyther, D. E., K. Kusahara, X. S. Asay-Davis, M. S. Dinniman, and B. K. Galton-Fenzi (2020). Vertical Processes and Resolution Impact Ice Shelf Basal Melting: A Multi-Model Study. Ocean Modelling 147, 101569.
Jeong, H., X. S. Asay-Davis, A. K. Turner, D. S. Comeau, S. F. Price, R. P. Abernathey, M. Veneziani, et al. (2020). Impacts of Ice-Shelf Melting on Water-Mass Transformation in the Southern Ocean from E3SM Simulations. Journal of Climate 33(13), 5787-5807.
Jourdain, N. C., X. Asay-Davis, T. Hattermann, F. Straneo, H. Seroussi, C. M. Little, and S. Nowicki (2020). A Protocol for Calculating Basal Melt Rates in the ISMIP6 Antarctic Ice Sheet Projections. The Cryosphere 14(9), 3111-34.
Nowicki, S., H. Goelzer, H. Seroussi, A. J. Payne, W. H. Lipscomb, A. Abe-Ouchi, C. Agosta, et al. (2020). Experimental Protocol for Sea Level Projections from ISMIP6 Stand-Alone Ice Sheet Models. The Cryosphere 14(7), 2331-68.
Seroussi, H., S. Nowicki, A. J. Payne, H. Goelzer, W. H. Lipscomb, A. Abe-Ouchi, C. Agosta, et al. (2020). ISMIP6 Antarctica: A Multi-Model Ensemble of the Antarctic Ice Sheet Evolution over the 21st Century. The Cryosphere 14(9), 3033-70.
Zhang, T, S. F. Price, M. J. Hoffman, M. Perego, and X. Asay-Davis (2020). Diagnosing the Sensitivity of Grounding-Line Flux to Changes in Sub-Ice-Shelf Melting. The Cryosphere 14(10), 3407-24.
Hoffman, M. J., X. Asay-Davis, S. Price, J. Fyke, and M. Perego. (2019). Effect of subshelf melt variability on sea level rise contribution from Thwaites Glacier, Antarctica. JGR: Earth Surface, 124.
Golaz, J. C., P. M. Caldwell, L. P. Van Roekel, M. R. Petersen et al. (2019). The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. JAMES, 11, 2089–2129.
Petersen, M., X. Asay-Davis, A. Berres, D. Comeau, N. Feige, D. Jacobsen, P. Jones, M. Maltrud, T. Ringler, G. Streletz, A. Turner, L. Van Roekel, M. Veneziani, J. Wolfe, P. Wolfram and J. Woodring. (2018). An evaluation of the ocean and sea ice climate of E3SM using MPAS and interannual CORE-II forcing. JAMES, 11, 1438-1458.
Pattyn, F., C. Ritz, E. Hanna, X. Asay-Davis, R. DeConto, G. Durand, L. Favier, et al. (2018). The Greenland and Antarctic Ice Sheets under 1.5°C Global Warming. Nature Climate Change, November, 8, 1053-1061.
R. Reese, T. Albrecht, M. Mengel, X. Asay-Davis, and R. Winkelmann (2018): Antarctic sub-shelf melt rates via PICO, The Cryosphere, 12(6), 1969-1985.
X. S. Asay-Davis, N. C. Jourdain, Y. Nakayama (2017). (Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet. Current Climate Change Reports 3(4), 316-329.
M. S. Dinniman, X. S. Asay-Davis, B. K. Galton-Fenzi, P. R. Holland, A. Jenkins, and R. Timmermann (2016). Modeling Ice Shelf/Ocean Interaction in Antarctica: A Review. Oceanography, 29(4), 144-153.
X. S. Asay-Davis, S.L. Cornford, G. Durand, B.K. Galton-Fenzi, R.M. Gladstone, G.H. Gudmundsson, T. Hattermann, D.M. Holland, D. Holland, P.R. Holland, D.F. Martin, D. P. Mathiot, F. Pattyn, and H. Seroussi (2016). Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) and MISOMIP v. 1 (MISOMIP1). Geoscientific Model Development, 9(7), 2471-2497.
G.R. Leguy, X.S. Asay-Davis, W.H. Lipscomb (2014). Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model. The Cryosphere, 8(4), 1239-1259.
P.S. Marcus, X. Asay-Davis, M.H. Wong, I. de Pater (2012). Jupiter’s New Red Oval: Dynamics, Color, and Relationship to Jovian Climate Change. Journal of Heat Transfer, 135(1), 011007.
M.H. Wong, P.S. Marcus, I. de Pater, X. Asay-Davis, C.Y. Go (2011). Vertical structure of Jupiter’s Oval BA before and after it reddened: What changed? Icarus, 215(1), Pages 211-225.
X.S. Asay-Davis, P.S. Marcus, M.H. Wong, I. de Pater (2011). Changes in Jupiter’s zonal velocity between 1979 and 2008, Icarus. 211(2), 1215-1232.
A.T. Lee, E. Chiang, X. Asay-Davis, J. Barranco (2010). Forming Planetesimals by Gravitational Instability. I. The Role of the Richardson Number in Triggering the Kelvin-Helmholtz Instability, The Astrophysical Journal, 718(2), 1367.
A.T. Lee, E. Chiang, X. Asay-Davis, J. Barranco (2010). Forming Planetesimals by Gravitational Instability: II. How Dust Settles to its Marginally Stable State, The Astrophysical Journal, 725(2), 1938-1954.
X.S. Asay-Davis, P.S. Marcus, M.H. Wong, I. de Pater (2009). Jupiter’s shrinking Great Red Spot and steady Oval BA: Velocity measurements with the “Advection Corrected Correlation Image Velocimetry” automated cloud-tracking method, Icarus. 203(1), 164-188.
S. Shetty, X.S. Asay-Davis and P.S. Marcus (2007). On the interaction of Jupiter’s Great Red Spot and zonal jet streams. Journal of Atmospheric Sciences. 64, 4432-4444.